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Abstract. We study a two-dimensional Ising model on a triangular lattice which is divided
into two sublattices. One consists of a honeycomb of sites and the other of the remaining
interstitial sites. The interaction energies within the honeycomb and between the honeycomb
and the interstitial sites differ from each other. The method used consists of a combination
of transfer matrix techniques and the phenomenological renormalisation procedure. Results
are presented for the critical temperature and exponents in zero field and the phase diagram
in the temperature-field plane is obtained.

1. Introduction

The use of transfer matrix methods in the statistical mechanics of lattice systems is well
known, both as a means of obtaining the exact solution of the two-dimensional Ising
model (Onsager 1944) and for obtaining approximate solutions for more complex sys-
tems (Ree and Chesnut 1966, Runnels and Combs 1966, Bellemans and Nigam 1967,
Lavis 1976). In the latter context a one-dimensionally infinite lattice, with periodic
boundary conditions, is used as an approximation to a two-dimensionally infinite system.
Although such a system, with short-range forces, will not exhibit phase transitions,
maxima in thermodynamic response functions and in the correlation length can be
observed and are used to give the approximate locations of the phase transitions that
would occur in the corresponding two-dimensionally infinite system.

The phenomenological renormalisation method is based on the finite-size scaling
method of Fisher (1971) and Fisher and Barber (1972). It utilises the transfer matrix
formalism in combination with renormalisation group procedures and was introduced
by Nightingale (1976). It has now been used by many workers (Sneddon 1978, 1979,
Derrida and Vannimenus 1980, Nightingale and Blote 1980, Wood and Goldfinch 1980,
Kinzel and Schick 1981, Goldfinch and Wood 1982, Droz and Malaspinas 1983) to obtain
numerical estimates of second-order critical-point parameters. It has also been applied
to situations where it is known that the phase transition is of first order (Blote et al 1981,
Roomany and Wyld 1981). Wood and Osbaldestin (1982, 1983) have argued that an
inherent characteristic of the method is that it locates phase transitions without having
the ability to distinguish between surfaces of critical points (second-order transitions)
and coexistence surfaces (first-order transitions). This has led them to develop the
method into a general procedure for obtaining an approximate form for full equilibrium
phase diagrams, including the locations of points of multi-phase coexistence. We shall
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use both traditional transfer matrix methods and phenomenological renormalisation
techniques in our investigation of the triangular ferrimagnetic Ising model, which was
introduced by Bell (1974a, b) and investigated by Lavis and Quinn (1983) using a finite-
cluster renormalisation group method. One characteristic property of ferrimagnets is
the shape of the inverse zero-field susceptibility curve above the critical temperature.
Unlike in the case of a ferromagnet, this is normally concave towards the temperature
axis and the intercept of its high-temperature asymptote and the axis is at a point below
the critical temperature. Another property of many ferrimagnets is the occurrence of a
compensation temperature. This is a point on the zero-field axis, below the critical
temperature, at which the magnetisation falls to zero because of the cancellation of
sublattice magnetisations. This point lies at the end of a line of first-order transitions in
the temperature—field plane. Both the mean-field methods of Bell (1974a, b) and the
cluster renormalisation methods of Lavis and Quinn (1983) indicate that the model
under discussion is able to produce these ferrimagnetic properties. Our present results
support this. They also appear to give more accurate values for critical properties.

In § 2 the model is introduced, in § 3 the methods of investigation are described, in
§ 4 our results are presented and in § 5 our conclusions are given.

2. The model

A triangular lattice is divided into a honeycomb sublattice b and a sublattice a consisting
of the interstitial sites. The sites of sublattices a and b are occupied by ions of magnetic
moments €, and &, respectively. The nearest-neighbour exchange energies are —Jy, and
—J . for b-b and a-b pairs respectively. The Hamiltonian ¥ is then given by

H=22%, (1a)
A
where

Ko =—USaSo1 + T S2Sm2 + Jop551502)/2
— H(e,S, + &,Sp; + €,52)/6 (1)

and the sum in (1a) is over all the elementary triangles of the lattice, each one consisting
of an a site and two b sites, bl and b2. The spin variables §,, S,; and Sy, can take the
values 1. The six possible ground states of the system have been described in detail by
Lavis and Quinn (1983). They are F=): ferromagnetic ordering with spin orientation % 1;
FI(*): ferromagneticordering onsublattice b with spin orientation = 1 and spin orientation
¥1 on sublattice a; AF*®): antiferromagnetic ordering on sublattice b with the spins on
sublattice a in state =1.

On the zero-field axis the Hamiltonian is invariant under spin inversion and the
ground states will be denoted by F, FI and AF respectively. In our analysis we shall
consider only J,, < 0 and, in the case of non-zero field, we shall also restrict our attention
to Jy, > 0. We use the parameters

0= |Jab|/(uab| + |Jbb|) (20)
and
r=g,/€, (20)
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and the reduced temperature and field variables

T = kT/(V | + Von)) (2¢)
and

H = e H/([J | + Vi) (2d)

respectively, where & is Boltzmann’s constant.

3. Methods

3.1. The transfer matrix method

The sites {R} of the triangular lattice are given, in terms of the cartesian unit vectors £
and y, by

R = Ry[p# + q(£ + 3'%5)/2] ?3)

where Ryisthelatticespacing,p =1,2,...,Nandg = 1,2, ..., nand periodic bound-
ary conditions are applied in both directions. Because of the sublattice structure, both
n and N must be integer multiples of three. The sites of the lattice with particular fixed
values of p and q are called the pth column and gth row respectively.

Let ¥»*1 be the contribution to the Hamiltonian from the interaction between
columnsp andp + 1, including half the energy of the interactions with the external field.
If the spin states of a lattice column are labelled j=1,2,...,2" then the Boltzmann
factor exp(—%*P*V/kT) is an element of the transfer matrix V), and the partition
function Z™ is given by

Z®W = Tr{(VO)N] = 2 (AM)N 4)

where AV, i=1,2,...,2", are the eigenvalues of V), arranged in descending order
of magnitude. All the elements of V are strictly positive and it follows from Perron’s
theorem (see, e.g., Gantmacher 1959) that A{" is real and positive with A{? > [A("] i =

2,3,...,2" Inthe limit of large N the dimensionless free energy @ {”, per lattice site,
is given by

cp(l") =—(1/nN)In Z® = —(1/n) In A (%)
and the inverse correlation length £ is given (Domb 1960) by

£ = cln(|A® /AP 6)
where c is a function only of the lattice spacing R,. By analogy with (5) we define

¢ = —=(1/n) InA{| (7)
and it follows that

£ = cn(¢) — V). (8)

In the two-dimensionally infinite version of our model (n — =) the occurrence of a
phase transition would be associated with degeneracy in the largest eigenvalue of the
transfer matrix. This event, which from (6) is equivalent to a zero in the inverse cor-
relationlength £, is usually associated with the occurrence of asecond-order transition.
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Kac (1968) has, however, argued that asymptotic degeneracy is a general mathematical
mechanism for phase transitions and represents the appearance of two stable phases. It
may, therefore, be indicative of either a second- or first-order transition. For finite n,
thermodynamic functions have no singularities. We can, however, obtain estimates for
phase transitions in the infinite system by locating minima in {* as a function of T at
constant H, for our system with finite 7, expecting our estimates to become increasingly
accurate as n is increased. In the temperature—field plane the minima in { form a line
of points denoted by £™. From (8) it will be seen that £ corresponds to the line of
closest approach of the values of the functions @{” and ¢{" at constant field. In the spirit
of mean-field theory and of the argument of Kac (1968), referred to above, we could
interpret (p(z") as the free energy of a metastable phase.

3.2. The phenomenological renormalisation method

The essence of the finite-size scaling method (see, e.g., Barber 1983) is the extrapolation
of results for finite systems to obtain estimates for the critical properties of infinite
systems. For relatively complex systems, like the one under consideration, the size of
the matrices involved makes this procedure difficult to implement beyond quite small
values of n. The alternative method, due to Nightingale (1976), is based on the sup-
position that we can define amapping (T, H) — (T', H'),in the temperature—field plane,
that satisfies the relationship

nE®(T, H) =n'{"UT", H') )

where n' < n. Equation (9) is not alone sufficient to define the mapping, except if H =
0, when, on symmetry grounds, we must have H' = 0. The zero-field axis is, therefore,
an invariant subspace of the transformation. Let (T, 0) be a fixed point and define ¢ =
T — T,. We now express (9) in the form

¢ (eb*r, Hb*n) = bE™ (2, H) (10)
where b = n/n’ and we have defined the exponents xand x according to the formulae
' = th*T (11a)
H' = Hb*H, (11b)

Equation (10) is very similar to the scaling equation
E(tbo1, HbVH) = b(t, H) (12)

for the inverse correlation length £ of the two-dimensionally infinite system, where 7 =

— T., T. being the critical temperature of the infinite system. Nightingale’s method is
based onthe hypothe51s that(10)isan approx1mat10n to(12), whichbecomesincreasingly
accurate as n, n’ — % with b remaining finite. This assumes the convergence of the
limiting procedures Ty(b,n)—> T,, x{(b,n) = yr, x4(b,n)— yy and ™ — & = ¢.
Numerical calculations for the two-dimensional Ising model (Nightingale 1976) provide
strong support for this conjecture. They show that, although the rate of convergence is
affected by the relationship between n and n', itis achieved for a variety of choices, with
the optimum strategy being

n' =n-p (13)
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where p, is the periodicity of the system (py =1 for the simple ferromagnetic Ising
model, p, = 3 for our system).

An important aspect of phenomenological renormalisation is that it is able to yield
numerical estimates x; and x for the values of the critical exponents y; and yy. This
contrasts with scaling theory, of which (12) is a part, which gives the scaling law relation-
ships between exponents (see, e.g., Hankey and Stanley 1972), but no numerical values
for the individual exponents. Following Wood and Osbaldestin (1982) we define the
function

YT, H) = n'§¢N(T, H) = nf™(T, H). (14)
It will then be seen that a solution T = T, of the equation
y(T,0)=0 (15)

will correspond to the fixed point (T, 0) of the mapping defined by (9), when n' is given
by (13). Having found T, which is taken to be our estimate of the critical temperature
T., the exponent xis given, from (10), by

xr =1n[(85™ /8T)o/(85™) /3T)o)/In(n/n") + 1 (16)

where the subscript 0 indicates that the derivatives are evaluated at the fixed point. A
similar procedure can be adopted for the evaluation of x5, except that, since £™ and £
are even functions of H, we must use the second derivative of (10). This gives

xp =In[(825W /8 H )0 /(85" [9H)o)/2 In(n/n') + 4. (17)

For the model of interest in this paper, first-order transitions are expected in regions
of the temperature—field plane away from the zero-field axis. The method used to
determine their approximate location follows the work of Wood and Osbaldestin (1982).
They have argued that the solution curve €™ of the equation

YT, H) =0 (18)

in the temperature-field plane converges, as n increases, on any phase equilibrium curve
and that, for any finite n, €™ bounds a region containing all the phase equilibrium
curves. At a point on 6™ we define the exponent

x(@) = In(VEW - &/VE™) - @) /In(n/n’) + 1 (19)

where the gradient is taken with respect to (H, T) and & = (cos «, sin &). In general this
exponent is a function both of @, the angle of directional differentiation with respect to
the field axis, and of T and H. Since from (14)

Vy® =p'VER) — v (20)

it follows that, if & is tangential to 6, then x(a) = 0. This marginal exponent along the
curve is to be expected since each point of € is a fixed point of the renormalisation
transformation.

The only case in which x(a) does not vary with a is when the vectors V™ and V£
are parallel and, from (20), in the normal direction to €. According to the argument
of Kinzel and Schick (1981) this is the case that yields the value closest to the relevant
exponent for the phase boundary of the system when n— «,
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4. Results

41. H=0

The root T; of equation (15) is our approximation to the critical temperature 7. Both
Toand T, are functions of 8 and the sign of J,,, but not of r or of the sign of /,,. We have
calculated T as a function of 8 for n = 6 and n’ = 3 and the results are presented in
figure 1. Since we have taken J,;, < 0 the transition is to the phase with ground state FI
in all cases shown except whenJy,, < 0and 0 < 8 < 0.5 when the transition is to the phase
with ground state AF. Our calculations can be compared with exact results in a number
of special cases (see Lavis and Quinn 1983). For 6 = 0.5, J,, > 0, T, = 2/In(3) = 1.821,
the value for the ferromagnetic isotropic Ising model, and our result is T, = 1.822.
For 6 =0 the critical temperature is that of the Ising honeycomb model, T.=
2/In(2 + V3) = 1.519, compared with our result T = 1.511. The exact critical tem-
perature for 6 = 1.0 can be obtained by using a de-decoration transformation to map
the model on to the isotropic ferromagnet. This yields

T, = Z[In(l + 3 +2[2(31/2)]1/2)]-1 = 2.405 1)

compared with the result 7, = 2.395 obtained here.

0 0.5 1.0

Figure 1. The critical temperature as a function of 6. The full curve represents a transition
to a phase with ferrimagnetic ground state F1 and the chain curve a transition to a transition
to a phase with antiferromagnetic ground state AF.



A triangular Ising ferrimagnetic model 2135

For H =0 the model is isomorphic to the corresponding ferromagnetic model
obtained by changing the sign of J,;,. This latter model is in the universality class of the
isotropic ferromagnet (J,, = Jy, > 0) and thus for the thermal exponent we must have
yr = 1.0. Our calculated estimate xfor y;shows a small variation with 8, the minimum
value being 0.984 at 6 =0 and 1.0 and the maximum being 1.0035 at 6 = 0.5. This
latter value is the same as that derived by Kinzel and Schick (1981) for the equivalent
ferromagnetic model. As may be expected, exact agreement between the results for
ferromagnetic and ferrimagnetic models does not occur in the case of the magnetic
exponent. As indicated in § 1, an important feature of ferrimagnetic systems is the
occurrence of a compensation temperature below the critical temperature at which spin
cancellation leads to a zero magnetisation. In our model this compensation temperature
is a function of r and 6 and is denoted by T*(r, 8). We now denote by r*(6) the value
of r, for some 6, at which the critical and compensation temperatures coincide. Exact
results (see Lavis and Quinn 1983) indicate that, for our model, the magnetic exponent
yr should take its ferromagnetic Ising value of 1.875. However, when r = r*, leading
amplitudes in the thermodynamic functions are zero and the critical exponents differ
from their ferromagnetic values. We have investigated the value of x4 for both ferro-
magnetic and ferrimagnetic cases. In the former case this exponent exhibits only a small
variation with respect to 6 and none with respect to r. Our results agree with the
value 1.8738 obtained by Kinzel and Schick (1981) for the case where 8 = 0.5. For the
ferrimagnetic model there is a variation of x; both with respect to 6 and . This variation
is shown in figure 2, where graphs are presented for 6 = 0.0, 0.5 and 1.0. Minima in
these curves occur for 8 = 0.5 and 1.0 at » = 2.0 and 1.73 respectively. These values
can be compared with the exact results (see Lavis and Quinn 1983) r*(0.5) = 2.0 and
r*(1.0) = 1.728; which are the values of r for which the critical exponents deviate from
their Ising ferromagnetic values.

2.0 ™

1.5

1.0

0.5

0 . )
10 15 20 25
r

Figure 2. The variation of the estimated magnetic exponent xy with respect to r. Curves are
labelled with their values of 8.
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4.2.H+0

Asindicated in § 2, we use both transfer matrix and phenomenological renormalisation
methods to obtain the phase diagram. Results are presented in figure 3 for the case where
6 = 1.0and r = 1.9. The broken curve in figure 3 corresponds to the curve £9 of minima
of £©(T, H) with respect to T and the full curve corresponds to the curve €©, obtained
from (18). £® can be regarded as an approximation to the first-order transition between
the ferrimagnetic phases F1'*) and F1{~) and the intersection of £ and € at T = 0.747,
H = 2.763 is taken as an estimate for the end-point of the curve. Since £© is monotonic
on the zero-field axis, £® does not meet this axis but approaches it closely after attaining
amaximum temperature value of T = 1.646. This can be compared with the exact value
7%(1.9,1.0) = 1.658 for the compensation temperature, which can be derived from
formulae given by Lavis and Quinn (1983). The exponent x(«), given by (19), was
calculated at various points on €®. On the lower branch of the curve the exponent
showed a strong dependence on «, corresponding to a large angie between the vectors
VE® and VE© (e.g. 0.50 rad at H = 0.75). The same was true on the upper branch of
the curve from the critical point to about H = 0.5. On the remaining part of the upper
branch of the curve the a-dependence of the exponent was modest other than for
directions near to the tangent lines to 6®. Two cases in this category are shown in figure
4. The corresponding angles between VE©® and VE© are (A) 0.0086 rad and (B)
0.0087 rad. The fact that in case A the exponent is close to 2.0 is significant since the
value expected for the relevant exponent along a first-order transition curve is d = 2.

0 1 . 2 ‘3
H

Figure 3. The phase diagram in the temperature—field plane for 6 = 1.0 and r = 1.9. The full
curve corresponds to the curve € and the broken curve corresponds to the curve £,
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Case C in figure 4 corresponds to the calculated end-point of the line of first-order
transitions. Here the angle between V{® and VE© is large (0.380 rad). This point lies
on%® between the points corresponding to cases B and D, where the a-dependence of
the exponent is more modest. It may be supposed that the behaviour of the exponent in
case C, as contrasted to cases B and D, is related to the existence of two relevant
exponents at the end-point in the corresponding two-dimensionally infinite system.

5. Conclusions

We have investigated a two-dimensional ferrimagnetic Ising model using a combination
of transfer matrix and phenomenological renormalisation methods. On the zero-field
axis the critical temperature has been calculated as a function of the parameter 8. The
maximum error shown for the three cases for which the exact result is known is 0.53%.
The maximum error for the thermal exponent y; at the critical point is 3.5%. Exact
calculations show that the critical exponents differ from their ferromagnetic values when
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the critical and compensation temperatures coincide. We have demonstrated that our
estimate xy for the magnetic exponent y; attains a minimum at this value of r. It
is reasonable to suppose that, as n increases, this minimum will steepen to a point
discontinuity. To predict the known value of 8 (see Lavis and Quinn 1983) the dis-
continuity value would need to be 0.875 as compared with the approximate value of 0.5
obtained here.

The qualitative features of our phase diagram are consistent with the known prop-
erties of the system and the error in our estimate of the compensation temperature is
less than 0.1%. The critical exponent for the phase transition curve is close to its first-
order value. Exponents in a neighbourhood of the critical end-point are more difficult
to interpret.
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